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Transforms of the Coulomb Green function by the form factors 
of the Graz potential 
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Department of Physics, Visva-Bharati University, Santiniketan-73 1 235, India 

Received 8 March 1988, in final form 29 March 1989 

Abstract. The term by term separability of the Sturmian function representation of the 
Coulomb Green function is exploited to construct expressions for the single and double 
transforms of the corresponding outgoing wave Green function by the form factors of the 
Graz separable potential. 

1. Introduction 

In the recent past the Graz group [l] obtained a realistic fit to the N-N interaction 
in terms of a separable potential. For a particular partial wave characterised by 1 the 
form factor of this potential in the representation space (r-space) is given by 

(1) 

where xl  is the inverse range parameter. It has been found that the integral transforms 

gx,,dr) = (4gx,,J = 2 - ‘ w - I +  exp(-x,r) 

and 
Po0 P m  

of the outgoing wave Coulomb Green function Ga:’(r, r ’ )  written as [2] 

Gc) (  r, r ’ )  = (2 i l~ )~ ‘+’ (  r r f ) l i 1  exp[ik( r + r ’ ) ]  

T(I+ 1 Sir])  
r(21+2) 

X @( 1 + 1 + ir], 21 + 2; -2ikr,)W( 1 + 1 + ir],21+ 2; -2i kr,) 

(4) 

with energy E = k2> 0 play a crucial role in the studies of on- and off-shell properties 
of the Coulomb-distorted Graz potential [3]. The quantities 0 and Y are the regular 
and irregular confluent hypergeometric functions and r< and r ,  have their usual 
meaning. In writing (4) we have suppressed the energy dependence of GL:)( r, r ’ ) .  We 
shall follow this convention throughout. 

The object of this work is to derive an uncomplicated method for evaluating the 
integrals in (2) and (3). To that end we shall deal with the Sturm series representation 
[4] of the bound-state Coulomb Green function Gc,( r, r ’ ) ,  evaluate its single transform 
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with the form factor in (1) and then analytically continue the result to obtain I (  r, P I )  
in terms of Gaussian hypergeometric functions which are absolutely convergent on 
the entire unit circle. Further, we shall see that the result for I ( q ,  P I )  can be obtained 
directly from 

I ( %  P I )  = lom drfL,,dr)I(I., P I ) .  

The Green operator corresponding to Gc,(r, r’) is given by [4] 

Here the Sturm states IA,l) represent the ‘interaction strength’ eigenfunctions and are 
defined as the eigenstates of &Go/ [4]: 

V/Go/(-K2)l~,~) = Af l l  A n 0  n =1+1,1-t2, .  . . (7)  

with the fixed energy -K’ < 0. The quantities V, and Go, stand for the partially projected 
potential and free-particle Green operator. The states IA,l) satisfy the orthonormality 
relation 

( A , ~ l ~ G O ~ ~ A , ~ )  = -a,,,,. (8) 

When the operator V, corresponds to the Coulomb potential, Vc(r )  = -2S/r, the 
eigenvalues A, are given by 

A, = s/ nK,. (9) 

There exists a simple relation between the Coulomb bound states ]IC,/) and Sturmian 
states I&/), and we have 

IK,,l) = 2”2~nGorlA,l). (10) 

The Sturm states form a complete set with the closure relation 
CO 

-G,’= IA,f)(A,,ll. 
t I= /+ l  

In 0 2 we evaluate the integrals in ( 2 )  and (3). We present some concluding remarks 
in Q 3. 

2. Results for Z(r, P I )  and I ( q ,  P I )  

From (4) we see that certain indefinite integrals are implied in ( 2 )  and (3) when 
GLT)(r, r’) is written in terms of energy eigenfunctions. Buchholz [5] has considered 
these indefinite integrals in some detail. Johnson and Hirschfelder [6] observe that 
use of the results of Buchholz and their concomitant reduction do not reduce (2) and 
(3) in compact analytical form. 

In contrast to (4), equation (6) provides us with a term-by-term separable representa- 
tion for the Coulomb Green function. This will therefore help us circumvent the 
characteristic difficulties associated with the above noted indefinite integrals. The price 
we pay for this is that we must now deal with the series arising from (6) and be very 
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careful about its convergence at positive energies. The single transform in (2) can be 
related to the mixed representation (rlGcl/gpl,f) of the Green operator in (6) as follows. 

From (6) we write 
CO 

Both factors (r~Gof~Anl) and (h,llGol~gp,f) in (12) can be evaluated in a rather straightfor- 
ward way, For example, in view of ( l o ) ,  (rlGoflhnl) is simply related to the Coulomb 
bound-state energy eigenfunction written as [4] 

r( n - I )  
T ( n  + I +  1) ( K , l I  r )  = ( ) ( 2 K r ) + ex p ( - K ,, r ) L:'?,!! ( 2 K ,, r 1. 

The associated Laguerre polynomial L,"(Z) in (13) is related to the 
hypergeometric) function by 

) (confluent 

The factor (Afll~Gof~gpf,f) is found in the form 

where 

z = (PI - K n ) ( P f  + K f l ) - I .  (16) 

In writing (15) we have used the result of the standard integral Jy exp(-xt)t"Li(t) d t  
given by Magnus et al[7].  Equations (10) and (12)-(15) can now be combined to write 

O0 T ( m + 2 1 + 2 ) Z m  Lo ( m  + 1 + 1 - s/ K,)m ! 
lF,(-m, 21+2; ~ K J )  m = n - 1 - 1 .  

Rearranging the terms in the infinite series in (17) we get 

While summarising the recent progress in the study of Coulomb Green functions and 
propagators Blinder [8] has pointed out that, in addition to a denumerable set of Sturm 
functions, there exists a corresponding continuum set. Both sets are complete over 
the same domain as that of the discrete hydrogenic wavefunctions augmented by a 
continuum set. The continuum Sturmians are obtained from the denumerable ones 
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by means of an analytic continuation similar to that used for the hydrogenic wavefunc- 
tions. The Green functions for energies E < 0 and E > 0 are also analogously expressed. 
The expression in (18) involving 2Fl( ) functions may therefore be analytically con- 
tinued from real positive K into complex K plane. Hence, replacing K ,  by -ik and 
- S / K ,  by iq  we obtain from (18) 

I ( r ,  P I )  = -2-'(1!)-'(PI-ik)-'rf+' exp(ikr) 

It is of interest to note that, for all m, the 2Fl( ) functions in (19) are absolutely 
convergent. 

From ( 5 )  and (19) the double transform I ( a l ,  P I )  is obtained as 

I ( q ,  P I )  =2-2'(1!)-2(al -ik)-'(P,-ik)-' 

T(m+21+2) ( 2ik(P1+ik) )" 
( m + 1 + 1 + iv ) m ! ( a, - i k)( p l  - i k) 

m + 2 1 + 2 , m + l + l + i v ;  m+1+2+i77;- 
PI -1k 

We now replace the 2Fl( ) function by its integral representation and perform the 
summation involved to get 

r(21+2)(a, + ~ ~ ) - ~ l - '  
I ( q ,  P I )  = -2-2f(1!)-2 

( l + l + i ~ ) ( a l - i k ) ( P l - i k )  

( a1 + ik)(P, + ik) 
(a1  -ik)(p,-ik) 

1 , iv - l ;  1+2+i77; 

The result in (21) is in maximal reduced form. This could also be obtained by a 
differential equation method recently derived by two of us [9]. In the appendix we 
present a useful check on our results in (19) and (21). We rederive them by using 
tabulated integrals only. 

3. Conclusion 

In this paper we have found the single and double transforms of GLT)(r, r') by the 
form factors of a rank-one separable potential. This potential falls short in producing 
the ' S o  effective range parameters and fitting the P- and D-wave data. The Graz group 
has parametrised a new separable rank-two potential (Graz 11) [ lo]  which meets the 
demand of a precise description of the p-p interaction for 1 s 2. Thus, evaluation of 
the transforms of GT)( r, r') by the form factors of the Graz I1 potential is of considerable 
physical interest. We have verified that this problem does not involve any new 
mathematical complication and, in fact, all results can be expressed in terms of (19) 
and (21) and their derivatives with respect to the inverse range parameter. 
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Appendix. Direct evaluation of the results in (19) and (21) 

To evaluate I( r, P I )  we begin by introducing the regular Coulomb Green function 
written as 

x exp[ik(r+ r ’ ) ] [ 6 (  1 + 1 +iv,  21+2; -2ikr)@(I+ 1 +iv, 21 +2; -2ikr‘) 

- @ ( l + l + i v ,  2I+2; -2ikr)G(I+l+iv,21+2; -2ikr‘)l r‘< r 

= O  r t >  r 
(Al l  

where 

6 ( a ,  c; 2)  = Z1-w(a  - c +  1,2-  c; 2). 

From (l), (2), (4) and ( A l )  we have 

2-I( 1 ! ) - I  rl+l 
I ( r , P J =  2ik 

x exp[ - ( PI + i k )  r’] (-2ikr’) 2‘tl exp(2ikr’)@( I + 1 + i v,21+ 2; -2ikr’) 

-@( l+  l + i v ,  214-2; -2ikr) d(-2ikr’) 

x exp[-(P1+ik)r’](-2ikr’)2’+’ exp(2ikrt)6(l+ 1 +iq,  21+2; -2ikr’) 

lb 

(2ik)2‘+2(D(I+ 1 +iv,  21+2; -2ikr) 
r(I+ 1 + iv )  + 

r(21+ 2) 

xexp[-(PI - ik)r’]9(Z+l+iv,  21+2; -2ikr’) . 

Expanding exp[-(Pl + ik)r’] in power series and using the standard integral 

Jom exp(-ax)x’-’V(b, d ;  p x )  dx 

1 (A3 1 

R e s > O  1 +Re S > Re d (‘44) 
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we can rewrite (A3) in the form 

2-'( 1!)-1 r l + l  
I ( r , P , )  = 2ik 

xexp(ikr) [n:,:;(21il) C -- ( 6 ( l + l + i g 2 1 + 2 ;  -2ikr) 

x e~p(2ikr')(-2ikr')"+~'+'@(Z+ 1 Sir], 21+2; -2ikr') 

-@(l+l+ir] ,21+2;  -2ikr) d(-2ikr') lb 
x e~p(2ikr')(-2ikr')"+~'+'6(l+ 1 +ir], 21+2; -2ikr') 

(A5) J x @ ( I +  1 + ir],21+2; -2ikr) 

where 

p = (pl+ik)/2ik.  (A61 

Babister [ l l]  has shown that 

Z" 
a(a+ c - 1) = e,(a, C; z )  = 2F2(1, c + a ;  a + l ;  a+c; 2). 

From (A5) and (A7) we have 

I ( r ,  p, )  = -2-'(1!)-'r'+' 

1, ir] - I ;  1+2+ir];  
1 

x exp(ikr) 

1 
x @( 1 + 1 + ir], 21 + 2; -2ikr) +- 

21k 

In writing (A8) we have made use of [7] 

ZF,(a, b ;  C ; Z ) = ( ~ - Z ) ' - " - ~ , F , ( C - U , , - ~ ;  c ; Z ) .  

Equation (A8) represents the result for Z(r, p, )  in (19). 
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The result for I ( q ,  P I )  in (21) can be obtained from j y  d r  gm,,/( r ) l (  r, P I )  as follows. 
From (5) and (A8) we obtain 

r(21+2) 
( I +  1 + iq)(Pl  - ik)(  a: + k2) ‘ + I  

I ( q ,  PI) = 2-21(I!)-2 

1 .f p n r ( 2 1 + 2 + n )  1 , iq- I ;  
( ( ~ ~ - i k ) * ‘ + ~ ~ = O  ( n + l ) !  

x ( -2)’2Fl aI -ik (1, n + 1+2+ i7; n + 2; 

To derive (A10) we have used [ll] 

jOm e-bzZ”8,(a, c; p Z )  d Z  

and 

$,(a, b, c ;  c , f ;  2) =*F,(a,  b;f; 2). (‘413) 

Unfortunately, (A101 is not in the standard form as obtained in the text. To reduce 
(A10) to the desired form we transform 2F1(1, n + I + 2 + i q ;  n+2;  -2ik/(al-ik)) by 
the relations (A8) and [7] 

*F,(a,  b; c ;  2)  

to get 

-n, I + l + i g ;  I+2+iq;-  . (A15) al- lk  
p n r ( 2 1 + 2 + n )  

n!  x c  
n = O  

The infinite sum in (A15) can be removed by replacing 

-n, l + l + i q ;  
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by its integral representation. We thus get 

Interestingly 

x lo1 dt  t'' 1 -  ( P I  - ik)( a, - ik) 

( P I  - i k ) (  cyI  - ik) 

-21-2 

21+2, l + l + i q ;  1+2+iq ;  ( P I  - ik)( aI - ik) 
- - 

From (A9), (A16) and (A17) we can write 

2-21( 1!)-2r(2i+ 2)( a1 + 
( 1  + 1 + iq ) (p l  - ik)(al  - ik) P I )  = - 

the standard result in (21). 
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